
1 

 

A Diagnostic Intercomparison of Modeled Ozone Dry Deposition 
Over North America and Europe Using AQMEII4 Regional-Scale 
Simulations 
Christian Hogrefe1, Stefano Galmarini2, Paul A. Makar3, Ioannis Kioutsioukis4, Olivia E. Clifton5,6, 
Ummugulsum Alyuz7, Jesse O. Bash1, Roberto Bellasio8, Roberto Bianconi8, Tim Butler9, Philip 5 
Cheung3, Alma Hodzic10, Richard Kranenburg11, Aurelia Lupascu12, Kester Momoh7, Juan Luis Perez-
Camanyo13, Jonathan E. Pleim1, Young-Hee Ryu14, Roberto San Jose13, Martijn Schaap11, Donna B. 
Schwede1,*, and Ranjeet Sokhi7 
1Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 109 T.W. Alexander Dr., P.O. 
Box 12055, RTP, NC 27711, USA 10 
2JRC, European Commission, Ispra, Italy 
3Environment and Climate Change Canada, Toronto, Canada  
4Department of Physics, University of Patras, Patras, Greece 
5Center for Climate Systems Research, Columbia University, New York, NY, USA 
6NASA Goddard Institute for Space Studies, New York, NY, USA 15 
7Centre for Climate Change Research (C3R), U. Hertfordshire, UK 
8Enviroware srl, Concorezzo, MB, Italy 
9Research Institute for Sustainability – Helmholtz Centre Potsdam, Germany 
10NCAR, Boulder, CO, USA 
11TNO, Utrecht, the Netherlands 20 
12ECMWF, Bonn, Germany 
13Technical University of Madrid (UPM), Madrid, Spain 
14Yonsei University, Seoul, South Korea 
*retired 
 25 

Correspondence to: Christian Hogrefe (hogrefe.christian@epa.gov) 

Abstract. This study analyzes ozone (O3) dry deposition fluxes and velocities (Vd) from regional-scale simulations that were 

performed over North America and Europe in Phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). 

AQMEII4 collected grid-aggregated and land use (LU)-specific O3 Vd and effective conductances and fluxes for the four 

major dry deposition pathways. Consistent with recent findings in the AQMEII4 point model intercomparison study, analysis 30 

of the grid-aggregated fields shows that grid models with similar Vd can exhibit significant differences in the absolute and 

relative contributions of the different depositional pathways. Analysis of LU-specific Vd and effective conductances reveals a 

general increase in model spread compared to grid-aggregated values. This indicates that an analysis of only grid-aggregated 

deposition diagnostics can mask process-specific differences that exist between schemes. An analysis of AQMEII4 LU 

distributions across models revealed substantial differences in the spatial patterns and abundance of certain LU categories over 35 

both domains, especially for non-forest partially vegetated categories such as agricultural areas, shrubland, and grassland. We 
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demonstrate that these differences can contribute to or even drive differences in LU-specific dry deposition fluxes. Two 

recommendations for future deposition-focused modeling studies emerging from the AQMEII4 analyses presented here are to 

1) routinely generate diagnostic outputs to advance a process-based understanding of modeled deposition and support impact 

analyses, and 2) recognize the importance of documenting and analyzing the representation of LU across models and work 40 

towards harmonizing this aspect when using air-quality grid models and model ensembles for deposition analyses.  

1 Introduction 

Dry deposition to the surface is one of the largest sinks in the budget of tropospheric ozone (O3) (Wild, 2007) and can be a key 

contributor to O3 variability (Clifton et al., 2020a; Lin et al., 2020; Baublitz et al., 2020). As summarized in Hardacre et al. 

(2015) based on previous global modeling studies (Stevenson et al., 2006; Wild, 2007; Ganzeveld et al., 2009; Young et al., 45 

2013), the magnitude of this sink has been estimated to be on the order of 1000 Tg/yr, with about 2/3 of the dry deposition 

flux occurring over land and the remaining 1/3 occurring over oceans. Most global and regional chemistry transport models 

(CTMs) employ resistance frameworks to represent O3 dry deposition, such as the frameworks introduced in Wesely (1989) 

and Zhang et al. (2003). In these frameworks, dry deposition fluxes are represented as the product of the O3 mixing ratio and 

a deposition velocity (Vd) which in turn is represented as a combination of process-specific resistances acting in parallel or in 50 

series to impede the transfer of mass to the surface. However, the implementation of these resistance frameworks can differ 

significantly across models, especially with respect to representing the surface resistance and its split between the stomatal and 

non-stomatal components (Hardacre et al., 2015; Wu et al., 2018; Wong et al., 2019; Clifton et al., 2020b and 2023; Galmarini 

et al., 2021). 

The ability of CTMs to provide spatially continuous fields of O3 mixing ratios, Vd, and dry deposition fluxes has led to their 55 

use in numerous studies quantifying ecosystem damages due to O3 dry deposition. In some studies, ecosystem impacts were 

calculated using O3 mixing ratios simulated by global CTMs in conjunction with crop distribution datasets and literature-based 

concentration-response relationships without explicitly taking into account modeled stomatal dry deposition fluxes (Wang and 

Mauzerall, 2004; Van Dingenen, 2009; Avery et al., 2011). In a study focused on assessing O3 dry deposition in global models, 

Hardacre et al. (2015) analyzed fields of monthly grid-aggregated O3 dry deposition fluxes from 15 CTMs that had participated 60 

in the first Task Force on Hemispheric Transport of Air Pollution (TF HTAP) model intercomparison project (Fiore et al., 

2009). Because the native land use (LU) databases used by each model were not available, the study overlaid the modeled 

fluxes on two independent global LU databases to estimate O3 fluxes to specific LU types. A similar approach was taken by 

Schwede et al. (2018) to estimate global nitrogen deposition to forests using deposition fluxes archived from the second TF 

HTAP model intercomparison (Tan et al., 2018) and combining them with a global forest cover dataset independent of the 65 

models’ internal LU databases. While this approach makes direct use of modeled dry deposition fluxes, potential 

inconsistencies between the LU datasets used in the CTMs and those used in the post-processing attribution of modeled fluxes 
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to specific ecosystems can introduce uncertainties. Moreover, utilizing archived grid-aggregated deposition fluxes does not 

account for potential subgrid variations in LU that could have a strong impact on ecosystem specific deposition. To explore 

the impacts of such subgrid effects, Schwede et al. (2018) also presented results from the EMEP MSC-W model (Simpson et 70 

al., 2012) which employs a mosaic approach to calculate and optionally output Vd and deposition fluxes for each LU present 

in a grid cell. Results showed that the total global estimate of nitrogen deposition to forest was 12% higher using forest-specific 

EMEP fluxes compared to grid-aggregated fluxes and that locally fluxes estimated using the two approaches could differ by 

more than a factor of 2 depending on the LU heterogeneity in a given grid cell (Schwede et al., 2018).  A companion paper in 

this issue showed large land-use dependent variations in deposition fluxes for both sulfur and nitrogen species (particularly for 75 

bidirectional fluxes of ammonia gas) and noted that LU databases used for post-processing critical load analysis may also 

differ from those used in regional models, with harmonization of these databases recommended for future modeling studies 

(Makar et al., 2024).   

As discussed above, CTM-based approaches to assess ecosystem impacts of air pollution can be affected by uncertainties in 

input datasets (emissions, meteorology, and LU) as well as the representation of a variety of chemical and physical processes. 80 

Hardacre et al. (2015) noted that advancing a process-level understanding of how uncertainties and errors in modeled dry 

deposition contribute to overall CTM error and variability would require the generation of detailed diagnostic model outputs 

at an hourly resolution, including stomatal and non-stomatal conductances and fluxes at both the grid-aggregated level and for 

individual LU categories. While a few global modeling studies using individual CTMs have incorporated such diagnostic fields 

and demonstrated their utility (Paulot et al., 2018; Clifton et al., 2020a) and prior to AQMEII-4 this practice was recommended 85 

by a recent review (Clifton et al. 2020b), to date it had not been adopted in model intercomparison studies at either the global 

or regional scale. Partially motivated by this research gap, the fourth phase of the Air Quality Model Evaluation International 

Initiative (AQMEII4) was designed around complementary grid and single point modeling activities for a diagnostic 

intercomparison and evaluation of simulated deposition with a specific focus on dry deposition of gaseous species (Galmarini 

et al., 2021; Clifton et al., 2023). 90 

In this study conducted within the framework of AQMEII4, we apply the diagnostic approaches described in the AQMEII4 

technical note (Galmarini et al., 2021) and the manuscript presenting the evaluation of single point models at eight long-term 

O3 flux measurement sites (Clifton et al., 2023) to the analysis of O3 dry deposition simulated by the AQMEII4 regional-scale 

models over North America (NA) and Europe (EU). Our analysis also leverages the common AQMEII4 LU types defined in 

Galmarini et al. (2021). As discussed in that study, assigning model native LU types to a common set of AQMEII4 LU types 95 

allows consistent LU-specific comparisons (note that some of the most common LU types, such as evergreen needleleaf forest, 

are present in all native model LU databases). First, we quantify temporal and spatial variations in estimated O3 deposition by 

analyzing different deposition pathways and comparing grid-aggregated vs. AQMEII4 LU-specific diagnostics. We also 

demonstrate that the LU-specific diagnostics can be used to connect grid model results to the evaluation of single point models 

against long-term O3 flux measurement sites described in Clifton et al. (2023). Next, we assess the impacts of differences in 100 
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LU between the AQMEII4 grid models on simulated fluxes to different ecosystems. Finally, we discuss the implications of 

our analyses to O3 deposition impact studies, particularly impact studies based on datasets from multi-model intercomparison 

activities, as well as to future model development aimed at improving dry deposition process representation. 

2 Datasets 

Table 1 lists the participating regional-scale models, the institutions performing the simulations, the continent each simulation 105 

was performed for, their dry deposition schemes, and the LU classification scheme used in their dry deposition calculations. 

Detailed descriptions of the model configurations were provided in Makar et al. (2024) while their dry deposition algorithms 

were documented in Galmarini et al. (2021), Clifton et al. (2023), and Hogrefe et al. (2023). The 16 AQMEII4 LU types to 

which native LU types were assigned are described in Galmarini et al. (2021) and discussed in detail in section 3.3.  An 

operational and probabilistic evaluation of simulated O3 mixing ratios against ground level network observations over NA and 110 

EU is presented in Kioutsioukis et al. (2025).  

 

Table 1: Model simulations analyzed in this study. See Makar et al. (2024) for additional details on the configuration of each 

simulation. 

Modeling System Domain Modeling Group Dry Deposition 
Scheme 

LU for Dry Deposition 
Scheme 

WRF/CMAQ (M3Dry) NA U.S. EPA M3Dry MODIS 
WRF/CMAQ (STAGE) NA U.S. EPA STAGE AQMEII4 
GEM-MACH (Base) NA Environment and Climate 

Change Canada 
Wesely Makar et al., (2018) 

GEM-MACH (Zhang) NA Environment and Climate 
Change Canada 

Zhang Zhang et al. (2003) 

GEM-MACH (Ops) NA Environment and Climate 
Change Canada 

Wesely Makar et al., (2018) 

WRF-Chem (RIFS) NA Research Center for 
Sustainability (RIFS) 

Wesely USGS24 

WRF-Chem (UPM) NA Technical University of 
Madrid (UPM) 

Wesely USGS24 

WRF-Chem (NCAR) NA National Center for 
Atmospheric Research / 
Yonsei University 

Wesely USGS24 

WRF-Chem (RIFS) EU Research Center for 
Sustainability (RIFS) 

Wesely USGS24 

WRF-Chem (UPM) EU Technical University of 
Madrid (UPM) 

Wesely USGS24 

LOTOS/EUROS  EU TNO DEPAC DEPAC 
WRF/CMAQ (STAGE) EU University of Hertfordshire STAGE AQMEII4 
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 115 

The analysis in this manuscript utilizes dry deposition fluxes and the O3 dry deposition diagnostic variables described in detail 

in Galmarini et al. (2021) and Clifton et al. (2023), namely O3 dry deposition velocities (Vd) and effective conductances (Paulot 

et al., 2018; Clifton et al., 2020a) for the stomatal, cuticular, soil, and lower canopy pathways reported at both the grid-

aggregated scale and for each of the 16 AQMEII4 LU categories. No effective conductances were available for 

LOTOS/EUROS but reported grid-aggregated O3 Vd, deposition fluxes, and LU distributions are included in the analysis. For 120 

WRF-Chem (NCAR), LU-specific dry deposition calculations for its native “mixed shrubland / grassland” category were 

inadvertently mapped to and then reported for the AQMEII4 “savanna” category (along with its native “savanna” category) 

rather than the intended AQMEII4 “shrubland” category. This inadvertent mapping was corrected for the comparison of LU 

categories across models but could not be corrected for the analysis of LU-specific Vd and effective conductances. For all 

models except GEM-MACH (Base) and GEM-MACH (Ops), the spatial fields of LU categories in both the land-surface model 125 

(LSM) and dry deposition code were time independent and considered the “snow and ice” category to represent permanent 

snow and ice. For the GEM-MACH (Base) and GEM-MACH (Ops) dry deposition calculations, the LU categories used in the 

dry deposition calculations and subsequently reported to AQMEII4 were modified from their time-independent LSM values 

to represent the time-varying effects of transient snow cover through the “snow and ice” category, and proportionally reduced 

the fractions of all other LU categories in the grid cell if snow cover was present. To enable a comparison of these time-130 

dependent LU fractions to the fractions reported by other models, time-independent fractions for  GEM-MACH (Base) and 

GEM-MACH (Ops) were derived by scanning the hourly reported fields and determining the LU fractions in each grid cell 

when the coverage of the “snow and ice” category reached its annual minimum (zero for the vast majority of grid cells) for 

that grid cell. This approach allows the use of LU fractions as stratification criterion for all models in our analysis while 

retaining the effects of transient snow cover (represented through separate snow cover fields rather than time-dependent LU 135 

fractions in other dry deposition schemes) in the reported dry deposition diagnostics. 

As described in Galmarini et al. (2021), each simulation reported gridded fields of Vd and effective conductances as 288 

individual values representing monthly median diurnal cycles (24 hours times 12 months) at each grid cell for each simulated 

year. This approach was chosen because reporting and storing these diagnostic fields for all hours in the year would have been 

logistically impossible, and the selected approach still allows an analysis of their diurnal and seasonal variations. However, it 140 

should be noted that this approach of using monthly median values for individual diagnostics can introduce a temporal 

mismatch between reported Vd and effective conductance diagnostics, which in turn may cause the sum of the effective 

conductances on a monthly median basis to differ from monthly median Vd, even though on an hour-by-hour basis their sum 

equals Vd (Paulot et al., 2018; Clifton et al., 2020a). Despite this potential for deviations, the sum of the reported effective 

conductances was found to be within 3.5% of Vd on an annual domain mean basis for all simulations. The largest deviation 145 

(3.5%) occurred for WRF/CMAQ (M3DRY) for which grid-aggregated Vd was calculated within the model while effective 
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conductances were estimated through post-processing (Hogrefe et al., 2023). For the remainder of the discussions in this 

manuscript, we therefore treat the sum of the monthly median effective conductances as equivalent to Vd. 

3 Results 

3.1 Grid-Aggregated Results 150 

Table 2 lists the annual total O3 dry deposition fluxes estimated by the participating models over both the NA and EU domains. 

These totals are calculated over all non-water grid cells that were common to all simulations. The multi-model mean value is 

74.3 Tg/yr over the NA domain and 67.4 Tg/yr over the EU domain. Individual model estimates range from 59.5 Tg/yr (GEM-

MACH (Zhang)) to 91.4 Tg/yr (WRF-Chem (UPM)) over the NA domain and from 47.2 Tg/yr (LOTOS/EUROS) to 82.9 

Tg/yr (WRF-Chem (UPM)) over the EU domain. For context, past global modeling studies reported global annual O3 155 

deposition totals generally ranging between 800 Tg/yr and 1200 Tg/yr (e.g. Hardacre et al., 2015; Stevenson et al., 2006; Wild 

2007; Ganzeveld et al., 2009). 

Spatial patterns of these annual deposition fluxes for each model as well as the multi-model mean and normalized standard 

deviation are displayed in Figure 1 for the NA domain and Figure 2 for the EU domain. Over the NA domain all models 

estimate that O3 deposition is highest over the Eastern U.S. as well as along the West Coast, consistent with our expectations  160 

Table 2. Annual total O3 dry deposition fluxes and annual mean O3 dry deposition velocities estimated by the participating 

models over both the NA and EU domains. These totals are calculated over all non-water grid cells that were common to all 

simulations. The NA numbers are for 2016 while the EU number are for 2010. 

 Annual total O3 dry deposition flux (Tg) Annual mean O3 dry deposition velocity (cm/s) 
North America (2016) 

WRF/CMAQ (M3Dry) 66.1 0.28 
WRF/CMAQ (STAGE) 68.3 0.3 
GEM-MACH (Base) 73.9 0.37 
GEM-MACH (Zhang) 59.5 0.27 
GEM-MACH (Ops) 80.4 0.42 
WRF-Chem (RIFS) 79.0 0.34 
WRF-Chem (UPM) 91.5 0.38 
WRF-Chem (NCAR) 75.5 0.28 

Europe (2010) 
WRF-Chem (RIFS) 77.5 0.32 
WRF-Chem (UPM) 82.9 0.37 
LOTOS/EUROS  47.2 0.21 
WRF/CMAQ (STAGE) 61.9 0.25 
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that reflect a combination of higher O3 mixing ratios due to higher O3 precursor emissions in these regions and higher Vd over 

areas with higher vegetation density. The pronounced differences in deposition fluxes over the densely vegetated Southeastern 165 

U.S. between WRF-Chem (UPM) and GEM-MACH (Zhang) suggest that differences in the methodology used to represent 

deposition to vegetation are a key driver of model spread. The map of the multi-model normalized standard deviation over NA 

also shows significant spread in deposition to land over the generally more arid regions in the Western U.S., in addition to the 

spread over the Southeastern U.S. Over the EU domain, the largest relative spread in deposition to land occurs over 

Northwestern Scandinavia, Ireland, Great Britain, and Turkey, as well as the Alps and Northern Africa. Over both domains, 170 

there is a large relative spread in O3 deposition to water, with generally higher values for WRF-Chem than all other models, 

but the absolute magnitude of the flux is much smaller than the flux over land. 

To assess the role of variations in simulated Vd on the dry deposition fluxes discussed above, Table 2 includes the annual mean 

O3 Vd over both domains alongside the annual total O3. The relative differences between the annual mean Vd generally match 

those between the annual total deposition fluxes with only small exceptions (e.g., WRF-Chem (RIFS) has slightly lower Vd 175 

but a slightly higher dry deposition fluxes than GEM-MACH (Base)). Examining the spatial patterns of annual mean Vd for 

each model and the multi-model mean and normalized standard deviation in Figures 3-4 and comparing them to the patterns 

of the corresponding dry deposition flux maps in Figures 1-2 shows a high level of agreement. For example, the areas over the 

Southeastern U.S. where GEM-MACH (Base) and GEM-MACH (Ops) have larger fluxes than other models coincide with 

areas where these two simulations also have the highest O3 Vd. Moreover, the areas with the highest normalized flux standard 180 

deviation discussed above for both the NA and EU domains also show the highest normalized standard deviation for Vd. In 

some instances, areas may have similar Vd but noticeably different modeled dry deposition fluxes (e.g. the Southeastern U.S. 

vs. parts of the Canadian boreal forest region for model GEM-MACH (Ops)), suggesting that factors other than Vd, such as 

the location and density of precursor emission sources as well as other parameterizations for regional transport and chemical 

lifetime also impact modeled dry deposition flux patterns. GEM-MACH (Ops) and GEM-MACH (Base) share the same gas-185 

phase deposition code, though GEM-MACH (Base) more explicitly simulates transport through the forest canopy (Makar et 

al., 2017), and incorporates a parameterization for the influence of vehicle motion on vertical diffusive transport of mobile 

emissions (Makar et al., 2021), both of which have been shown to have a substantial impact on ozone concentrations near the 

surface.  However, despite these potentially confounding influences, the general agreement of both the model rankings for the 

domain-wide dry deposition fluxes vs. Vd (Table 2, Figures S1 vs. S2) and their spatial patterns (Figure 1 vs. Figure 3 and 190 

Figure 2 vs. Figure 4) confirms the influence of O3 Vd towards deposition fluxes estimated in these regional-scale simulations. 

This in turn establishes that a diagnostic understanding of simulated O3 Vd can aid in interpreting model-to-model differences 

in dry deposition fluxes. 
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Figure 1. 2016 annual total O3 grid-scale dry deposition fluxes for each model, the multi-model mean, and the normalized 195 

multi-model standard deviation over the NA domain. Note that the plots for individual models are not clipped to the domain 

common to all simulations and show the maximum spatial extent submitted for each model. The multi-model mean and 

normalized standard deviations are calculated and shown over the common domain. 
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Figure 2. 2010 annual total O3 grid-scale dry deposition fluxes for each model, the multi-model mean, and the normalized 200 

multi-model standard deviation over the EU domain. Note that the plots for individual models are not clipped to the domain 

common to all simulations and show the maximum spatial extent submitted for each model. The multi-model mean and 

normalized standard deviations are calculated and shown over the common domain. 
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 205 

Figure 3. 2016 annual mean O3 grid-scale dry deposition velocities for each model, the multi-model mean, and the normalized 

multi-model standard deviation over the NA domain. Note that the plots for individual models are not clipped to the domain 

common to all simulations and show the maximum spatial extent submitted for each model. The multi-model mean and 

normalized standard deviations are calculated and shown over the common domain. 
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 210 

Figure 4. 2010 annual mean O3 grid-scale dry deposition velocities for each model, the multi-model mean, and the normalized 

multi-model standard deviation over the EU domain. Note that the plots for individual models are not clipped to the domain 

common to all simulations and show the maximum spatial extent submitted for each model. The multi-model mean and 

normalized standard deviations are calculated and shown over the common domain. 

 215 

Figures S1 and S2 provide insight into temporal differences in modeled deposition by showing domain-wide deposition fluxes 

and O3 Vd calculated for winter vs. summer and daytime vs. nighttime periods for the NA domain. The largest deposition 

fluxes occur during summer daytime hours while the lowest deposition fluxes occur during winter nighttime hours, a pattern 

also present for Vd. Photochemical production of O3 is also higher in summer than in winter, which will also contribute to 

higher summertime fluxes.  Fluxes during winter daytime hours are generally of the same order of magnitude as fluxes during 220 

https://doi.org/10.5194/egusphere-2025-225
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

summer nighttime hours, both times corresponding to low photochemical production or ozone destruction through titration. 

These figures also suggest that the low annual total deposition value of model GEM-MACH (Zhang) and the high annual total 

deposition value of model WRF-Chem (UPM) shown in Table 2 were driven by low and high summer daytime flux values, 

respectively, and/or that other terms such as photochemical production in WRF-Chem (UPM) are enhancing summer ozone 

concentrations, hence increasing fluxes.While the absolute model-to-model differences are smaller during winter than summer 225 

for both fluxes and Vd, the normalized standard deviation is comparable across seasons for both variables (summer daytime 

flux 18.2%; winter daytime flux 14.5%; summer nighttime flux 22.7%; winter nighttime flux 22.8%; summer daytime Vd 

18.6%; winter daytime Vd 17.2%; summer nighttime Vd 34.2%; winter nighttime Vd 28.2%). During daytime, fluxes and Vd 

exhibit similar relative spread. The larger nighttime spread in Vd compared to the fluxes suggests that nighttime chemical sinks 

and/or a smaller ozone reservoir in the shallower nighttime mixing layer may be more important factors controlling O3 230 

concentrations, and hence O3 deposition fluxes, than the magnitude of the deposition velocity itself. However, it should also 

be noted that Clifton et al. (2020a) found that even small differences in wintertime Vd can have substantial impacts on the 

tropospheric O3 budget given the longer chemical lifetime.  

Figures 5-6 depict the contributions of the four effective conductance pathways to the annual domain-average Vd for each 

model over both domains. The total height of the bars for each model closely corresponds to that model’s Vd shown in Table 235 

2, within the caveats discussed in Section 2. Note that some of these simulations (WRF/CMAQ (M3DRY), WRF/CMAQ 

(STAGE), and GEM-MACH (Zhang)) do not incorporate a separate lower canopy pathway in their dry deposition schemes, 

and thus only have three deposition pathways in total (Galmarini et al., 2021; Clifton et al., 2023). These Figures show that 

models with similar Vd (e.g. WRF/CMAQ (M3DRY), GEM-MACH (Zhang), and WRF-Chem (NCAR) over NA) can show 

significant differences in the absolute and relative contributions of different pathways to Vd. Moreover, these Figures also 240 

demonstrate that effective conductances allow an attribution of model differences in Vd to specific processes. For example, 

GEM-MACH (Base), GEM-MACH (Ops), and WRF-Chem (RIFS) all have similar soil and lower canopy effective 

conductances, revealing that the differences in Vd between these simulations stem from differences in the cuticular and, to a 

lesser extent, stomatal pathways. Specifically, both GEM-MACH (Base) and GEM-MACH (Ops) have a higher cuticular 

effective conductance than WRF-Chem (RIFS). For the two CMAQ simulations over NA, Figure 5 confirms the generally 245 

larger contributions from the stomatal and cuticular pathways for WRF/CMAQ (M3DRY) and the generally larger contribution 

from the soil pathway for WRF/CMAQ (STAGE) that was reported in Hogrefe et al. (2023). Comparing GEM-MACH (Base) 

with GEM-MACH (Zhang) shows lower contributions from the soil and stomatal pathways for the latter, which also does not 

include a separate lower canopy pathway. 
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 250 

Figure 5. Annual domain-average grid-scale effective conductances and ozone deposition velocities for 2016 over the NA 

domain. Averages were calculated over all non-water grid cells in the portion of the analysis domain shared by all model 

simulations. 

Comparing the two GEM-MACH simulations with the same dry deposition scheme, GEM-MACH (Base) and GEM-MACH 

(Ops), reveals that differences other than the dry deposition scheme that exist between these simulations (e.g. meteorology and 255 

leaf area index (LAI)) have a noticeable impact on the magnitude of the cuticular and stomatal pathways. It should be noted 

that both GEM-MACH (Base) and GEM-MACH (Ops) are coupled models with chemistry residing within a weather forecast 

model – however, GEM-MACH (Base) is “fully coupled”, i.e. includes aerosol direct and indirect feedbacks on the predicted 

meteorology.  GEM-MACH (Base) also includes several other parameterizations affecting chemical transport as noted above.  

The difference in the strength of the cuticle and stomatal conductances between these two models thus reflects differences in 260 

the forecasted meteorology in turn influencing the deposition velocity components. 
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Figure 6. Annual domain-average grid-scale effective conductances and ozone deposition velocities for 2010 over the EU 

domain. Averages were calculated over all non-water grid cells in the portion of the analysis domain shared by all model 

simulations. The bar for LOTOS/EUROS shows only the deposition velocity since no effective conductances were reported. 265 

The impact of factors other than the dry deposition scheme itself on simulated Vd and pathway contributions is further 

illustrated by the comparison of the three WRF-Chem simulations performed over NA and the two WRF-Chem simulations 

performed over EU. These simulations all use the WRF-Chem implementation of the Wesely scheme and as a result all share 

similar relative pathway contributions to Vd, but Vd itself shows a variation of roughly 25% over NA and 15% over EU between 

these simulations.  All three of these models make use of feedbacks between aerosols and meteorology – and hence other 270 

parameterization differences in addition to the gas-phase deposition code influence the resulting gas-phase deposition 

velocities, through changes in the predicted temperature, relative humidity, and the other meteorological terms influencing 

deposition velocity.   

Figures 7-8 depict maps of absolute pathway contributions to annual mean Vd over both domains, where the mean is from the 

average of the monthly median values. The maps show the lower contributions from the cuticular pathway for WRF-Chem 275 

compared to other simulations, especially over the Eastern U.S. and Central Europe. This is consistent with the domain-average 

contributions shown in Figure 5. For the models that include the lower canopy pathway as a separate term from the other 
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pathways (all WRF-Chem simulations and two of the GEM-MACH simulations), its contribution to Vd is less than 0.06 cm/s 

throughout both domains (10% or less of the domain-wide annual means as shown in Figures 5-6). Both CMAQ simulations 

and the GEM-MACH (Zhang) simulation tend to have stronger longitudinal gradients over the NA domain for the soil pathway 280 

contribution compared to other simulations. The two GEM-MACH simulations using the Wesely dry deposition scheme 

(GEM-MACH (Base) and GEM-MACH (Ops)) and the WRF-Chem (CIFS) and WRF-Chem (UPM) simulations have 

noticeably higher absolute soil pathway contributions in the South-Central and Southeastern U.S. than the other simulations, 

indicating that the higher values in the domain-average soil pathway contributions for these four simulations shown in Figure 

3 originate in these regions. 285 

Figures S3 – S4 show the relative, rather than absolute, contribution of the four pathways to annual mean Vd over both domains 

while corresponding maps for summer and winter over NA are included as Figures S5 – S6. These figures show that the WRF-

Chem simulations tend to have a weaker spatial variation than the WRF/CMAQ and GEM-MACH simulations in the split 

between different pathways over both domains, especially for the relative contribution of the soil pathway. For example, the 

dominance of the stomatal and cuticular pathways over the soil pathway over the Eastern U.S., and of the soil pathway over 290 

the stomatal and cuticular pathways in the Western U.S. that is simulated by WRF/CMAQ and GEM-MACH is less 

pronounced in the WRF-Chem simulations. Over the EU domain, the WRF-Chem simulations show a larger relative 

contribution of the soil pathway than the WRF/CMAQ simulation throughout much of Central Europe. For the NA domain, 

the relative contributions of the cuticular component is highest for WRF/CMAQ over the Northeastern U.S., followed by 

GEM-MACH and then WRF-Chem. These features are especially pronounced during summer (Figure S5). For the EU domain, 295 

the relative contribution of the stomatal component is highest for WRF/CMAQ over eastern Central Europe and exceeds that 

of the WRF-Chem simulations. 
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Figure 7. Absolute grid-scale ozone effective conductances (cm/s), averaged over the entire year. Results are for the NA 

domain during 2016. Note that these maps are not clipped to the domain common to all simulations and show the maximum 300 

spatial extent of non-water cells submitted for each model. 
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Figure 8: Absolute grid-scale ozone effective conductances (cm/s), averaged over the entire year. Results are for the NA 

domain during 2016. Note that these maps are not clipped to the domain common to all simulations and show the maximum 

spatial extent of non-water cells submitted for each model. 305 

3.2 LU-Specific Results 

Because parameter choices in dry deposition schemes are often tied to LU, the model-to-model differences in domain-average 

grid-aggregated Vd and pathway contributions may result not only from different process representations, but also different 

LU spatial distributions and/or LU-dependent parameter choices. To investigate these effects, AQMEII4 collected Vd and 

effective conductances for 16 standardized LU categories in addition to the grid-aggregated values analyzed above. Figure 9 310 

shows the contributions of the four effective conductance pathways to the annual mean Vd for evergreen needleleaf forest for 

each model over the NA domain, averaged over only those grid cells were a given model had 85% coverage of evergreen 

needleleaf forest (note that the number of such grid cells differed across models, as discussed in greater detail in Section 3.3).  
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 315 

Figure 9. 2016 annual domain-average LU-specific effective conductances and ozone deposition velocities for evergreen 

needleleaf forest over the NA domain. Averages were calculated over all grid cells in the portion of the analysis domain shared 

by all model simulations for which a given model had coverage of at least 85% for the evergreen needleleaf forest LU category. 

Comparing this Figure to the equivalent grid-aggregated results shown in Figure 5 when all common non-water grid cells were 

analyzed shows that considering instead only the model grid cells containing a specific LU type can increase model spread. 320 

For example, annual mean grid-aggregated Vd ranges from 0.26 - 0.42 cm/s averaged over all common non-water grid cells 
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over NA (Figure 5) while the range is 0.24 - 0.71 for Vd for grid cells dominated by the evergreen needleleaf forest category 

(Figure 9). Similar increases can also be seen in the ranges of absolute pathway contributions (e.g. soil effective conductance 

from 0.12 – 0.21 cm/s in Figure 5 to 0.04 – 0.21 cm/s in Figure 9) and relative pathway contributions (e.g. cuticular conductance 

from 7.6% to 31.7% in Figure 5 to 12.6% – 56.4% in Figure 9). Results of individual and summed pathways contributions for 325 

a total of eight LU categories over both domains are shown in Tables 3a-3e. These results confirm the general increase in 

model spread of both Vd and pathway contributions when considering LU-specific diagnostics, especially for Vd and the 

cuticular and stomatal effective conductances over forested and agricultural LU types. Such increased heterogeneity of process-

level diagnostics when considering locations corresponding to specific LU categories compared to locations representing a 

mix of LU categories is also reported in Kioutsioukis et al. (2025). This finding suggests that LU-dependent parameter choices  330 

Table 3a. Annual mean grid-scale and LU-specific sum of effective conductances (cm/s) for individual simulations as well as 

the range of values across all simulations. For a given column and domain, the maximum values are shown in bold and the 

minimum values shown in italics. Blank cells indicate that data for a given model, pathway, and/or LU was not available. The 

grid-scale results reflect spatial averages over all non-water grid cells in the common analysis domain. The LU-specific results 

reflect spatial averages over all cells for which that LU fraction exceeded 85% for a given model (note that the number of such 335 

cells can vary across models). The LU categories are abbreviated as URB (urban), BAR (barren), ENF (evergreen needleleaf 

forest), DBF (deciduous broadleaf forest), MF (mixed forest), SHR (shrubland), AGR (planted / cultivated), and GRA 

(grassland). 

 Gridscale URB BAR ENF DBF MF SHR AGR GRA 
WRF/CMAQ (M3Dry) 0.28 0.21 0.25 0.3 0.37 0.27 0.27 0.28 0.21 
WRF/CMAQ (STAGE) 0.3 0.27 0.24 0.32 0.42 0.31 0.27 0.3 0.25 
GEM-MACH (Base) 0.36 0.26 0.21 0.55 0.48 0.39 0.35 0.4 0.36 
GEM-MACH (Zhang) 0.26 0.17 0.14 0.24 0.21 0.27 0.34 0.33 0.34 
GEM-MACH (Ops) 0.41 0.26 0.21 0.71 0.45 0.49 0.41 0.42 0.36 
WRF-Chem (RIFS) 0.33 0.18 0.13 0.34 0.37 0.28 0.28 0.37 0.32 
WRF-Chem (UPM) 0.36 0.2 0.16 0.38 0.42 0.31 0.31 0.41 0.34 
WRF-Chem (NCAR) 0.27 0.2 0.12 0.24 0.32 0.26  0.35 0.27 

Range NA 0.15 0.1 0.13 0.47 0.27 0.23 0.14 0.14 0.15 
 

WRF-Chem (RIFS) 0.32 0.18 0.14 0.31 0.38 0.26 0.3 0.36 0.3 
WRF-Chem (UPM) 0.36 0.19 0.17 0.33 0.42 0.29 0.29 0.42 0.31 
LOTOS/EUROS           
WRF/CMAQ (STAGE) 0.24 0.26 0.25 0.22 0.29 0.24 0.22 0.29 0.2 

Range EU 0.12 0.08 0.11 0.11 0.13 0.05 0.08 0.13 0.11 
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Table 3b. As in Table 3a but for the stomatal effective conductances (cm/s). 

Table 3c. As in Table 3a but for the cuticular effective conductances (cm/s). 340 

 Gridscale URB BAR ENF DBF MF SHR AGR GRA 
WRF/CMAQ (M3Dry) 0.07 0 0 0.09 0.13 0.09 0.01 0.09 0.02 
WRF/CMAQ (STAGE) 0.06 0 0 0.07 0.1 0.08 0 0.07 0.02 
GEM-MACH (Base) 0.08 0.01 0 0.15 0.18 0.1 0.05 0.07 0.04 
GEM-MACH (Zhang) 0.06 0 0 0.07 0.08 0.07 0.05 0.07 0.13 
GEM-MACH (Ops) 0.11 0.01 0 0.22 0.16 0.15 0.1 0.09 0.04 
WRF-Chem (RIFS) 0.09 0 0 0.08 0.12 0.09 0.05 0.11 0.06 
WRF-Chem (UPM) 0.09 0 0 0.09 0.13 0.1 0.04 0.12 0.05 
WRF-Chem (NCAR) 0.07 0 0 0.07 0.09 0.09  0.1 0.05 

Range NA 0.05 0.01 0 0.15 0.1 0.08 0.1 0.05 0.11 
 

WRF-Chem (RIFS) 0.09 0 0 0.07 0.12 0.08 0.04 0.12 0.06 
WRF-Chem (UPM) 0.1 0 0 0.07 0.13 0.09 0.04 0.12 0.06 
LOTOS/EUROS           
WRF/CMAQ (STAGE) 0.06 0.01 0 0.06 0.05 0.07 0.01 0.09 0.01 

Range EU 0.04 0.01 0 0.01 0.08 0.02 0.03 0.03 0.05 

 Gridscale URB BAR ENF DBF MF SHR AGR GRA 
WRF/CMAQ (M3Dry) 0.09 0 0 0.17 0.19 0.14 0.01 0.07 0.02 
WRF/CMAQ (STAGE) 0.08 0 0 0.15 0.19 0.13 0.01 0.07 0.02 
GEM-MACH (Base) 0.06 0 0 0.2 0.1 0.12 0.02 0.03 0.04 
GEM-MACH (Zhang) 0.06 0.02 0 0.1 0.06 0.09 0.07 0.05 0.05 
GEM-MACH (Ops) 0.09 0 0 0.3 0.09 0.19 0.05 0.04 0.05 
WRF-Chem (RIFS) 0.03 0 0 0.04 0.03 0.04 0.02 0.03 0.03 
WRF-Chem (UPM) 0.03 0 0 0.05 0.03 0.04 0.02 0.03 0.03 
WRF-Chem (NCAR) 0.02 0 0 0.03 0.02 0.03  0.02 0.02 

Range NA 0.07 0.02 0 0.27 0.17 0.16 0.06 0.05 0.03 
 

WRF-Chem (RIFS) 0.05 0.02 0.01 0.07 0.05 0.05 0.03 0.04 0.04 
WRF-Chem (UPM) 0.05 0.02 0 0.08 0.05 0.06 0.04 0.05 0.04 
LOTOS/EUROS           
WRF/CMAQ (STAGE) 0.06 0.01 0 0.08 0.07 0.08 0.01 0.06 0.01 

Range EU 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.02 0.03 
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Table 3d. As in Table 3a but for the soil effective conductances (cm/s). 

Table 3e. As in Table 3a but for the lower canopy effective conductances (cm/s). 

 Gridscale URB BAR ENF DBF MF SHR AGR GRA 
WRF/CMAQ (M3Dry) 0.12 0.21 0.25 0.04 0.05 0.04 0.25 0.12 0.17 
WRF/CMAQ (STAGE) 0.16 0.27 0.24 0.1 0.13 0.1 0.26 0.16 0.21 
GEM-MACH (Base) 0.19 0.24 0.2 0.17 0.15 0.12 0.23 0.26 0.23 
GEM-MACH (Zhang) 0.14 0.15 0.14 0.07 0.07 0.11 0.22 0.21 0.16 
GEM-MACH (Ops) 0.18 0.24 0.2 0.16 0.15 0.11 0.22 0.25 0.23 
WRF-Chem (RIFS) 0.18 0.18 0.13 0.19 0.19 0.13 0.17 0.2 0.2 
WRF-Chem (UPM) 0.21 0.2 0.16 0.21 0.22 0.14 0.21 0.23 0.22 
WRF-Chem (NCAR) 0.15 0.2 0.12 0.12 0.17 0.11  0.2 0.17 

Range NA 0.09 0.12 0.13 0.17 0.17 0.1 0.09 0.14 0.07 
 

WRF-Chem (RIFS) 0.16 0.16 0.13 0.15 0.18 0.11 0.19 0.18 0.17 
WRF-Chem (UPM) 0.19 0.17 0.17 0.16 0.21 0.12 0.18 0.22 0.18 
LOTOS/EUROS           
WRF/CMAQ (STAGE) 0.12 0.24 0.25 0.08 0.17 0.09 0.2 0.14 0.18 

Range EU 0.07 0.08 0.12 0.08 0.04 0.03 0.02 0.08 0.01 

 Gridscale URB BAR ENF DBF MF SHR AGR GRA 
WRF/CMAQ (M3Dry)          
WRF/CMAQ (STAGE)          
GEM-MACH (Base) 0.03 0.01 0.01 0.03 0.05 0.05 0.05 0.04 0.05 
GEM-MACH (Zhang)          
GEM-MACH (Ops) 0.03 0.01 0.01 0.03 0.05 0.04 0.04 0.04 0.04 
WRF-Chem (RIFS) 0.03 0 0 0.03 0.03 0.02 0.04 0.03 0.03 
WRF-Chem (UPM) 0.03 0 0 0.03 0.04 0.03 0.04 0.03 0.04 
WRF-Chem (NCAR) 0.03 0 0 0.02 0.04 0.03  0.03 0.03 

Range NA 0 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.02 
 

WRF-Chem (RIFS) 0.02 0 0 0.02 0.03 0.02 0.04 0.02 0.03 
WRF-Chem (UPM) 0.02 0 0 0.02 0.03 0.02 0.03 0.03 0.03 
LOTOS/EUROS           
WRF/CMAQ (STAGE)          

Range EU 0 0 0 0 0 0 0.01 0.01 0 
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and the representation of vegetation effects on O3 dry deposition (e.g. whether or not a given scheme accounts for soil moisture 

effects on stomatal conductance) are a significant source of variability in grid-aggregated Vd while also indicating that an 

analysis of only grid-aggregated deposition diagnostics may partially mask the effects of process-specific differences that exist 345 

between schemes. However, the attribution of LU-specific diagnostics to LU-dependent parameter choices is complicated by 

potential model-to-model differences in LU distribution – for example, differences in the number and location of grid cells 

with a given LU type in a given modeling system may cause differences in macro-scale meteorological variables like wind 

speed and solar radiation that affect the deposition calculations in this LU-specific analysis. Differences in LU distributions 

between models are analyzed in Section 3.3.    350 

The availability of LU-specific dry deposition diagnostics from the AQMEII4 grid models also provides an opportunity to 

compare these diagnostics to the results from the point model intercomparison study by Clifton et al. (2023). At each of the 

eight O3 flux measurement sites examined in Clifton et al. (2023), the point model simulations were constrained to use a 

common set of site-specific variables like LAI, roughness length, and soil moisture.  Figures 10 and S6 – S8 show examples 

of this comparison. Figure 10 compares winter and summer average Vd and effective conductances simulated by the grid 355 

models for grid cells with mixed forest coverage greater than 85% against the corresponding results for point models at the 

two mixed forest sites analyzed in Clifton et al. (2023), i.e. Borden Forest and Harvard Forest. The point model results are 

identical to those shown in Figure 5 of Clifton et al. (2023), but while 18 point simulations were included in that Figure, only 

the five simulations corresponding to the schemes appearing in Clifton et al (2023) that were also implemented in the AQMEII4 

grid models (CMAQ M3Dry, CMAQ STAGE, GEM-MACH Wesely, GEM-MACH Zhang, and WRF-Chem Wesely) are 360 

reproduced here.  Also note that while the seasonal grid model values shown in Figure 10 are derived for a single year (2016) 

but averaged over all grid cells for which a given model had a fractional coverage of mixed forest exceeding 85%, the point 

model values at Borden Forest and Harvard Forest are multi-year means at single sites. The motivation for performing this 

comparison despite these differences in spatio-temporal aggregation is to assess to which extent the conclusions of a single-

point modeling study are consistent with results obtained from grid model deposition diagnostics and could therefore inform 365 

grid model development by providing process-level insights.   

A comparison of the summertime grid model and point model results in Figure 10 leads to similar conclusions regarding the 

magnitudes of simulated Vd and pathway contributions across models. For example, both grid model and point model Vd range 

between 0.4 and 1.0 cm s-1 across models. The lowest Vd for the point models is simulated by GEM-MACH Zhang while the 

highest Vd is simulated by GEM-MACH Wesely. This is consistent with the grid model results, with GEM-MACH (Zhang) 370 

showing lower Vd than all other grid models and GEM-MACH (Base) and GEM-MACH (Ops) showing higher Vd than all 

other grid models. Grid and point models also agree that CMAQ M3Dry has a much smaller contribution of the soil effective 

conductance to Vd compared to all other models and that WRF-Chem Wesely has a smaller contribution of the cuticular 

effective conductance to Vd compared to all other models.  
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 375 

Figure 10. Summer and winter effective conductances and ozone deposition velocities calculated by the grid models for mixed 

forest grid cells and calculated by the corresponding subset of single point (SP) models analyzed in Clifton et al. (2023) at the 

Borden Forest (BF) and Harvard Forest (HF) sites. The bars for the SP models are overlayed on grey boxes to visually 

distinguish them from the bars representing grid models. In the x-axis labels, results for the SP GEM-MACH Wesely 

simulations are shown as “SP GM Wesely” while results for the SP WRF-Chem Wesely simulations are shown as “SP WC 380 

Wesely”.  The mixed forest grid cells selected for this analysis are those in which a given model had at least 85% coverage for 

this LU category. The number of these grid cells differs across models due to underlying differences in LU (see Section 3.3). 
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During winter, the point and grid model results show consistency in terms of relative model rankings (GEM-MACH Zhang 

and the corresponding grid model simulations GEM-MACH (Base) and GEM-MACH (Ops) have the highest Vd while the 

CMAQ STAGE point and grid model simulations have the lowest Vd), the magnitude of Vd (ranging from about 0.1 to about 385 

0.35 cm s-1), and in terms of model-to-model variations in pathway contributions. However, the grid model results show 

generally lower Vd and a different ranking than the point model results, with GEM-MACH Wesely Vd roughly equal to GEM-

MACH Zhang in the point model comparison rather than significantly lower when comparing the corresponding grid model 

simulations GEM-MACH (Base), GEM-MACH (Ops), and GEM-MACH (Zhang). Spatial variations in snow cover across the 

mixed forest grid cells in the grid models as well as interannual variability in snow cover at the flux measurement sites may 390 

play a role in causing these wintertime differences, although Clifton et al. (2023) found that the point models results were not 

very sensitive to snow cover. The results of the grid model and point model analysis agree on the non-negligible wintertime 

contribution of the lower canopy pathway for the models that consider it, i.e. the GEM-MACH Wesely (20-40% across the 

corresponding grid and point models) and WRF-Chem Wesely (10-14% across the corresponding grid and point models) point 

models and their corresponding grid model implementations. 395 

Figures S7, S8, and S9 show corresponding results for evergreen needleleaf forest, broadleaf deciduous forest, and grassland, 

respectively. For each of these LU cases, the grid model results reflect simulated LU-specific Vd and effective conductances 

averaged over all grid cells with coverage greater than 85% for that LU category for a given model. The point model results 

adapted from Figure 5 of Clifton et al. (2023) are for Hyytiälä (evergreen needleleaf forest), Ispra (deciduous broadleaf forest), 

and Bugacpuszta and Easter Bush (both grassland)1. The results for evergreen needleleaf and deciduous broadleaf forest in 400 

Figures S7 and S8 are broadly consistent with those discussed above for mixed forest. In particular, agreement between grid 

and point modeling results is generally better during summer than winter, especially in terms of the GEM-MACH Wesely vs. 

GEM-MACH Zhang comparison. The non-negligible contribution of the wintertime lower canopy effective conductance 

simulated by GEM-MACH Wesely and, to a lesser extent, WRF-Chem Wesely discussed above for mixed forest is also visible 

in the deciduous broadleaf forest results, for both grid and point models, while it is less pronounced for evergreen needleleaf 405 

forest. The model-to-model comparisons for grassland show consistent behavior between the grid model and point model 

analyses for both winter and summer. During winter GEM-MACH Zhang and WRF-Chem Wesely show the highest Vd while 

 

 

1 We note that the LU present at these observation sites may not necessarily represent the dominant land use at the broader 
grid scale used in this analysis, and this may account for some of the residual differences between the grid model results 
extracted for specific LU classes and the point model results at these sites.  Ispra flux tower (45.812495N, 8.634771E) is within 
a forest of about 300m extent surrounded by the Joint Research Centre and the town of Ispra, and Easter Bush Field site 
(55.865N, 3.206W) is located 200m from the University of Edinburgh’s Easter Bush Campus.  The Hyytiälä site is more 
representative of the evergreen needleleaf forest on the grid cell scale, with the nearest changes in LU occurring ~800m from 
that site, and Bugacpuszta is also more representative of the larger region, which contains largely farmland/grassland with 
some trees.  
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GEM-MACH Wesely shows the lowest Vd. During summer, GEM-MACH Wesely Vd exceeds GEM-MACH Zhang Vd for 

both the grid model results and both grassland point intercomparison sites, though summertime GEM-MACH Zhang Vd for 

grassland is not as low relative to other models as for the different forest LU categories discussed above. Moreover, both grid 410 

model and point model results for summertime also agree that GEM-MACH Zhang has the largest relative contribution of the 

stomatal effective conductance to Vd for grassland.  

The results presented above demonstrate that despite differences in LU in the region of the observation sites at the scale of 

model grid cells, the analysis of O3 dry deposition schemes implemented in grid models can successfully be linked to the 

detailed point model evaluation using long-term O3 flux measurements presented in Clifton et al. (2023) when generating LU-415 

specific diagnostic information and limiting the analysis to specific LU categories. This in turn allows the developers of grid 

models to leverage process-level insights gained from point intercomparison studies (Clifton et al., 2023; Khan et al., 2024) 

for improving the representation of dry deposition in their modeling systems. However, as also discussed in the first part of 

this section, differences in LU characterizations between models can complicate a process-level attribution of differences 

across models to differences in deposition schemes, especially when considering LU-specific dry deposition fluxes. Similarly, 420 

observation sites with a variety of LU within a short distance of the measurement location itself may be less useful for 

evaluating LU-specific aspects of deposition algorithms.  Model differences in LU distributions and their effects on deposition 

fluxes are analyzed in the next section. 

3.3 The Influence of Land Use Data on Ozone Deposition 

Table 4 shows the native LU categories used in each model’s dry deposition calculations and how these categories were 425 

mapped to the 16 common AQMEII4 LU categories defined in Galmarini et al. (2021) when reporting LU-specific diagnostics. 

For some models (WRF/CMAQ (M3DRY), GEM-MACH (Zhang), WRF-Chem (RIFS), and WRF-Chem (UPM), the native 

LU categories used in the dry deposition calculations are identical to those used in the land-surface model (LSM) of the driving 

meteorological model. For the other models, the LU classification scheme differed between the LSM in the driving 

meteorological model and the dry deposition calculations, and Tables S1 – S5 provide details on the internal mapping between 430 

the LSM and dry deposition calculations implemented in these models.   We note that several AQMEII4 LU categories are 

held in common with most model native LU categories (e.g. “evergreen needleleaf trees”) while others were less direct, 

requiring assignment into the nearest AQMEII4 LU category as documented in these Tables.   

Figures 11 and 12 show bar charts of the distribution of all 16 AQMEII4 LU categories for each model across all common 

grid cells that aren’t dominated by water for the NA and EU domains. These charts reveal that 7 of the 16 categories (barren, 435 

evergreen needleleaf forest, deciduous broadleaf forest, mixed forest, shrubland, planted/cultivated land, and grassland) 

account for roughly 90% of all LU over both NA and EU. Over NA, the fractional coverage of some categories like evergreen 

needleleaf forest are similar across models, as might be expected from the commonality of this LU within the native LU 

categories of Table 4. On the other hand, there is considerable disagreement between models for the fractional coverage of  
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Figure 11. Fraction of the NA domain common to all models covered by each AQMEII4 LU category, excluding grid cells 

dominated by water by each model. 
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Figure 12. Fraction of the EU domain common to all models covered by each AQMEII4 LU category, excluding grid cells 445 

dominated by water by each model. 

many other categories over NA, especially non-forest categories such as barren, shrubland, planted/cultivated land, and 

grassland. Much of this disagreement is caused by the GEM-MACH simulations having larger fractions of the barren and 

shrubland categories and smaller fractions for the planted/cultivated and grassland categories than either the WRF/CMAQ or 
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WRF-Chem simulations, pointing to ambiguities in classifying non-forest partially vegetated areas2. Over EU, the primary 450 

driver of model variability in the LU used for deposition calculation is LOTOS/EUROS which in its DEPAC dry deposition 

module splits mixed forest from the driving meteorological model equally between coniferous and deciduous forest and 

includes shrubland in the category of semi-natural vegetation and as a result shows larger coverage than WRF/CMAQ and 

WRF-Chem for evergreen needleleaf forest, deciduous broadleaf forest, and grassland. In addition, while all models agree that 

planted/cultivated is the dominant category over EU, the lowest coverage (29.44%, LOTOS/EUROS) and highest coverages 455 

(47.11%, WRF-Chem (UPM)) differ by a factor of 1.6. Here it should be noted that LOTOS/EUROS is the only model using 

the official LU data of the European Union (in comparison to USGS for the WRF-CHEM simulations). 

Even for categories for which models show relatively close agreement of the total domain-wide coverage in Figures 11 and 

12, spatial patterns of these coverages may still differ between models. To illustrate this, Figures S10 and S11 show maps of 

the fractional coverage of the evergreen needleleaf forest category for each model over NA and EU. One fundamental 460 

difference between the WRF-Chem simulations and all other simulations is that the WRF-Chem simulations employed a 

dominant LU category approach in their LSM and dry deposition calculations (that is, only the LU with the largest LU fraction 

within a grid cell is used to represent that grid cell’s LU for deposition calculations) while all other simulations accounted for 

subgrid variations in LU by employing a fractional LU category approach. Therefore, Figures S10 and S11 show evergreen 

needleleaf forest fractions of either 0 or 1 for the WRF-Chem simulations and fractions between 0 and 1 for all other 465 

simulations. Both figures reveal that, despite all native LU databases including evergreen needleleaf forest as an explicit LU 

category, the coverage for this LU can vary substantially between models, e.g. over the Southeastern U.S. in the NA domain 

(Figure S10) and Central Europe and the Iberian Peninsula in the EU domain (Figure S11).  

To analyze the level of agreement in spatial coverage across models for all LU categories, while taking into account that the 

WRF-Chem simulations used a dominant LU category approach, we applied two metrics to assess model-to-model agreement 470 

for a given LU category and grid cell. The first metric simply determines whether all models agree that the LU category being 

assessed is the category with the highest fractional coverage (i.e. the dominant category) compared to all other categories in 

that grid cell, regardless of the actual fractional coverage for that dominant category for those simulations that use a fractional 

coverage approach. The second metric builds upon the first metric by not only determining whether the LU category being 

assessed is the dominant category in that grid cell, but also whether all models agree that its fractional coverage is at least 85%. 475 

By definition, all grid cells meeting the more stringent second metric also meet the first metric. Identifying grid cells meeting  

 

 

2 A subsequent investigation of the GEM-MACH land use database suggested that this difference is due to an underlying 
dataset which included “short grass and forbs” being aggregated to “Dwarf trees and shrubs”, in turn increasing the relative 
assignment to AQMEII4 shrubland, and decreasing the assignment to AQMEII4 grassland categories.  This misassignment 
has been corrected in implementations of GEM-MACH subsequent to that used in AQMEII4. 
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 NA, # of common 
cells with “dominant 
coverage” for LU 
category for all 
models 

NA, # of 
common cells 
with LU 
category 
coverage > 85% 
for all models  

EU, # of common 
cells with 
“dominant 
coverage” for LU 
category for all 
models 

EU, # of 
common cells 
with LU 
category 
coverage > 85% 
for all models 

Water 27,925 (25.84%) 26,949 (24.94%) 81,423 (46.00%) 78,186 (44.17%) 
Developed-Urban 161 (0.15%) 32 (0.03%) 63 (0.04%) 4 (0%) 
Barren 112 (0.10%) 14 (0.01%) 2,203 (1.25%) 1,310 (0.74%) 
Evergreen needleleaf forest 7,111 (6.58%) 1,544 (1.43%) 9,270 (5.237%) 2,531 (1.43%) 
Deciduous needleleaf 
forest 

0 (0%) 
 

0 (0%) 0 (0%) 0 (0%) 
 

Evergreen broadleaf forest 1 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Deciduous broadleaf forest 2,663 (2.46%) 581 (0.54%) 362 (0.21%) 5 (0%) 
Mixed forest 3,968 (3.67%) 705 (0.65%) 0 (0%) 0 (0%) 
Shrubland 757 (0.70%) 43 (0.04%) 0 (0%) 0 (0%) 
Herbaceous 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Planted/Cultivated 10,640 (9.85%) 6,130 (5.67%) 24,627 (13.91%) 6,108 (3.45%) 
Grassland 164 (0.15%) 52 (0.05%) 147 (0.08%) 0 (0%) 
Savanna 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Wetlands 1 (0%) 0 (0%) 0 (0%) 0 (0%) 
Tundra 83 (0.08%) 0 (0%) 0 (0%) 0 (0%) 
Snow and Ice 1 (0%) 0 (0%) 0 (0%) 0 (0%) 
Total of grid cells with 
common LU (incl. water 
cells) 

53,587 (49.59%) 36,050 (33.36%) 118,095 (66.72%) 88,144 (49.80%) 

Total of grid cells with 
diverging LU 
(incl. water cells) 

54,471 (50.41%) 72,008 (66.64%) 58,899 (33.28%) 88,850 (50.20%) 

Total of grid cells with 
common LU (excl. water 
cells) 

25,662 (32.02%) 9,101 (11.22%) 36,672 (38.37%) 9,958 (10.08%) 

Total of grid cells with 
diverging LU 
(excl. water cells) 

54,471 (67.98%) 72,008 (88.78%) 58,899 (61.63%) 88,850 (89.92%) 

 

Table 5. Number and percentage of grid cells within the common NA and EU analysis domains where all models agree on the 

LULC category for that grid cell. Two metrics are used to assess agreement: 1) all models agree that the LULC category being 

assessed is the category with the highest fractional coverage compared to all other categories in that grid cell (“dominant 480 

coverage”), and 2) in addition to meeting metric 1, all models also agree that a given grid cell has at least 85% coverage for 

the LULC category being assessed. The last four rows summarize the level of agreement across either all 16 LULC categories 

(including water) or all 15 non-water LULC categories. The percentages shown in the rows corresponding to individual LULC 

categories are calculated with respect to all grid cells in the common analysis domains (108,058 for NA and 176,994 for EU). 

https://doi.org/10.5194/egusphere-2025-225
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 

 485 

the first metric can be thought of as a way to assess agreement in LU categories across models if all simulations (not only 

WRF-Chem) had used a dominant LU category approach. The subset of grid cells identified by metric 1 for a given LU 

category that also satisfies the >85% criterion defined for metric 2 can be thought of as the common “dominant” cells for that 

LU category in which even the computations performed by the models using a fractional LU category approach were mostly 

impacted by the physical characteristics of that LU category, with only minor impacts from other LU categories possibly also 490 

present in the grid cell. This subset of grid cells was used in Section 3.2 when comparing Vd between the point model 

simulations at specific flux measurement sites and the grid model simulations.  

The results of applying metrics 1 and 2 to all LU categories and models over both NA and EU are shown in Figures S12-S13 

and Table 5 which lists the number and percentage of grid cells within the common NA and EU analysis meeting each metric. 

The first sixteen rows of Table 5 contain results for each of the AQMEII4 LU categories. The percentages shown in these rows 495 

are calculated with respect to the total number of grid cells in the common analysis domains (108,058 for NA and 176,994 for 

EU), including water grid cells. Water is by far the category with the highest level of agreement over both NA and EU with 

only minor differences between the two metrics, indicating that most grid cells dominated by water across all models are 

almost fully (> 85%) or often fully covered by water, reflecting the oceans and open waters present in both analysis domains. 

The LU categories with the second- and third-largest amount of agreement between models are planted/cultivated land and 500 

evergreen needleleaf forest over both domains. Over NA, the deciduous broadleaf and mixed forest LU categories also have 

about 600 – 4,000 [0.5% - 4%] common grid cells depending on metric and category. For the remaining LU categories, the 

number and percentage of grid cells matching across models is very low, especially for the more stringent metric 2. While to 

some extent this is expected given the low overall domain coverage of some of these categories by all models (Figures 11-12), 

this is also the case for shrubland and grassland which has substantial domain-wide coverage over NA (Figure 11). 505 

The last four rows of Table 5 summarize the level of agreement across either all 16 LU categories (including water) or the 15 

non-water LU categories. Figures 13a-d depict the location of common grid cells for both metrics and continents. In these 

figures, grid cells meeting the metric for any LU category are colored in dark red while grid cells not meeting it for any LU 

category (i.e. grid cells without common LU category as measured by the metric) are colored in white. These figures along 

with Table 5 illustrate that even for the less restrictive metric 1, 68% (62%) of non-water grid cells over NA (EU) do not share 510 

a common dominant LU category across models. Over NA, many of these non-matching grid cells are located in the southern 

and western portions of the domain while over EU, they are most prevalent in the western, northeastern, and southeastern 

portions of the domain. When considering the more stringent metric 2, i.e. grid cells in which the common category has at 

least 85% coverage for all models, this number of grid cells with diverging LU categories increases to roughly 90% of non-

water grid cells over both domains. The only areas with significant contiguous clusters of such common cells are the 515 

agricultural regions in the north-central NA domain and portions of central Europe and Sweden.  
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Figure 13. Red areas indicate grid cells meeting metrics 1 and 2 used to assess LU communality across models as described 

in the text. 

This low number of grid cells with a common LU category strongly suggests that differences in LU coverage can contribute 520 

to or even drive differences in LU-specific dry deposition fluxes, in addition to any differences in process representation that 

exist between different models. To investigate this, Figure 14 compares LU-specific dry deposition fluxes, Vd, and LU fractions 

over NA for 7 selected LU categories. The LU-specific dry deposition fluxes (Vd) represent annual totals (means) over all grid 

cells in which the LU category being assessed has a fractional coverage of at least 85% for a given model. For some LU 

categories with relatively similar total coverage across the domain (e.g. evergreen needleleaf forest and deciduous broadleaf 525 

forest), differences in total O3 dry deposition flux to that LU category closely mirror differences in LU-specific average Vd. 

For mixed forest, the lower fractional coverage for GEM-MACH (Base) and GEM-MACH (Ops) leads to a below-average 

total deposition flux to that category despite Vd being the highest. For the grassland and barren categories, differences in their 

dry deposition fluxes are almost entirely driven by differences in LU fractional coverage rather than differences in Vd. 

Corresponding results for the EU domain are shown in Figure S14 and confirm that differences in both Vd and LU coverage 530 

contribute to differences in LU-specific dry deposition fluxes. 
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Figure 14. LU-specific annual domain-total dry deposition fluxes (Tg), LU-specific annual mean dry deposition velocity 

(cm/s), and percentage LU category domain coverage (excluding water grid cells) for seven selected LU categories over the 535 

NA domain. For each LU category and model, the analysis considered grid cells in the analysis domain common to all models 

in which a given model had at least 85% coverage for this LU category. The number of these grid cells differs across models 

due to underlying differences in LU (see Section 3.3). 
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Figure 15. 2016 NA annual domain-wide total ozone dry deposition fluxes (Tg/yr) for selected LU categories. The grey bar 540 

shows LU-specific fluxes calculated by WRF/CMAQ (STAGE) while the colored bars show LU-specific fluxes estimated by 

combining WRF/CMAQ (STAGE) grid-scale fluxes with LU fractions from other models as described in the text. 

 

https://doi.org/10.5194/egusphere-2025-225
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



35 

 

The results shown in Figure 14 and S14 have important implications for computing estimates of deposition fluxes to specific 

ecosystems. In past model intercomparison studies such as those performed under the umbrella of the Task Force on 545 

Hemispheric Transport of Air Pollution (TF-HTAP, http://www.htap.org), such estimates have often been computed through 

post-processing by apportioning archived modeled grid-aggregated dry deposition fluxes to specific LU categories using a 

fixed LU database (e.g. Hardacre et al., 2015; Schwede et al., 2018). While this approach makes use of actual modeled dry 

deposition fluxes rather than using modeled concentrations as inputs to offline dry deposition calculations (e.g. Van Dingenen 

et al., 2009; Avnery et al., 2011), it may still be subject to uncertainties arising from differences between grid-aggregated vs. 550 

LU-specific dry deposition fluxes as well as differences in LU categorization – a flux associated with a model LU category for 

model-internal deposition may be aggregated under a different LU category in post-processing using a different post-

processing database.  The diagnostic information collected for AQMEII4 and analyzed in this manuscript allows us to illustrate 

and quantify both uncertainties.Figure 15 compares the LU-specific annual total dry deposition fluxes to seven LU categories 

calculated by model WRF/CMAQ (STAGE) (gray bars) to estimates derived by combining grid-aggregated dry deposition 555 

fluxes from the same model with LU fractions from all models (colored bars). Comparing the gray bars to the dark blue bars 

shows the impact of computing actual LU-specific deposition fluxes within the model simulation vs. estimating them by 

linearly scaling grid-aggregated values using the model’s own LU fractions. This effect is relatively small for most LU 

categories but reaches about 20% for evergreen needleleaf forest and 40% for barren. Comparing the grey bars to all the other 

colored bars (except dark blue) shows the combined uncertainty of using a linear scaling of grid-aggregated deposition values 560 

and using different LU datasets than the one used within the model to calculate the LU-specific value. These differences are 

generally much larger and reflect the substantial divergence in LU categories across models, due to the variety of native-mode 

LU databases in use between different models. This example demonstrates the advantage of computing and collecting LU-

specific diagnostic dry deposition information in model intercomparison studies so that model-to-model differences in 

deposition estimates can be tied to differences in model-specific process representation and LU datasets. Potential future work 565 

to harmonize LU datasets across models would allow further constraining differences to process representations only. This in 

turn would make it easier to leverage insights gained from point intercomparison studies (Wu et al., 2018; Clifton et al., 2023; 

Khan et al., submitted) for improving the representation of dry deposition in grid models.        

4 Summary 

This study presented a diagnostic analysis of ozone dry deposition from annual AQMEII4 photochemical grid modeling 570 

simulations performed over NA and EU. Simulated annual O3 dry deposition fluxes ranged from 59.5 Tg/yr to 91.4 Tg/yr over 

the NA domain and from 47.2 Tg/yr to 82.9 Tg/yr over the EU domain. Analysis of grid-aggregated effective conductances 

showed that models with similar Vd can exhibit significant differences in the absolute and relative contributions of different 

pathways to Vd. The availability of effective conductances also allowed an attribution of model differences in Vd to specific 

processes. For example, GEM-MACH (Base), GEM-MACH (Ops), and WRF-Chem (RIFS) all have similar soil and lower 575 
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canopy effective conductances, revealing that the differences in Vd between these simulations stem from differences in the 

cuticular and, to a lesser extent, stomatal pathways. 

Analysis of LU-specific Vd and effective conductances revealed a general increase in model spread compared to analyzing 

grid-aggregated values, especially for Vd and the cuticular and stomatal effective conductances over forested and agricultural 

LU types. This finding suggests that LU-dependent parameter choices and the representation of vegetation effects on O3 dry 580 

deposition are a significant source of variability in grid-aggregated Vd while also indicating that an analysis of only grid-

aggregated deposition diagnostics can mask process-specific differences that exist between schemes. Utilizing the LU-specific 

diagnostics available from the grid model simulations also provided an opportunity to compare these diagnostics to the results 

from the single-point model intercomparison study by Clifton et al. (2023). Results showed good agreement between the 

behavior of different dry deposition schemes in single-point models at individual sites vs. their implementation in grid models 585 

in aggregate across either the NA or EU domain for a given LU type.  For example, both grid model and point model Vd ranged 

between 0.4 and 1.0 cm s-1 across models for mixed forest grid model results and the corresponding point model results at 

Borden Forest and Harvard Forest, with the lowest Vd associated with GEM-MACH Zhang and the highest Vd associated with 

GEM-MACH Wesely in both comparisons.  Grid and point models also agreed that WRF/CMAQ M3Dry had a much smaller 

contribution of the soil effective conductance to Vd compared to all other models and that WRF-Chem Wesely had a smaller 590 

contribution of the cuticular effective conductance to Vd compared to all other models. This demonstrates that the analysis of 

O3 dry deposition schemes implemented in grid models can successfully be connected to detailed point model evaluation 

studies using long-term O3 flux measurements when generating LU-specific diagnostic information and limiting the analysis 

to specific LU categories. This in turn allows the developers of grid models to leverage process-level insights gained from 

point intercomparison studies for improving the representation of dry deposition in their modeling systems.  The importance 595 

of observation sites being representative of a single LU classification for this purpose has also been noted in this work. 

This study also presented a detailed analysis of different models’ LU distributions that revealed substantial differences in the 

spatial patterns and sometimes also the domain-wide coverage of certain LU categories over both domains, especially non-

forest partially vegetated categories such as agricultural areas, shrubland, and grassland. Overall, 68% (62%) of non-water grid 

cells over NA (EU) were found not to share a common dominant LU category across models. When considering only grid 600 

cells in which the common dominant category has at least 85% coverage for all models, this number of grid cells with diverging 

LU categories increased to roughly 90% of non-water grid cells over both domains. By comparing LU distributions, LU-

specific Vd, and LU-specific dry deposition fluxes, we demonstrate that differences in LU coverage can contribute to or even 

drive differences in LU-specific dry deposition fluxes, in addition to any differences in process representation that exist 

between different models. For mixed forest, the lower fractional coverage for GEM-MACH (Base) and GEM-MACH (Ops) 605 

leads to a below-average total deposition flux to that category despite Vd being the highest. Differences in the grassland and 

barren dry deposition fluxes over the NA domain are almost entirely driven by differences in LU fractional coverage rather 

than differences in Vd. On the other hand, for LU categories that have similar total domain-wide coverage across models (e.g. 
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evergreen needleleaf forest and deciduous broadleaf forest), differences in total O3 dry deposition fluxes to that LU category 

closely mirror differences in LU-specific average Vd, indicating that in this case differences in process representation drive 610 

differences in fluxes. 

Finally, we contrasted the LU-specific dry deposition fluxes simulated in AQMEII4 to estimates in which grid-aggregated 

fluxes were linearly apportioned to specific LU categories based on LU fractions. When using a consistent set of LU 

information between the direct simulation of LU-specific fluxes and the apportionment of grid-aggregated fluxes to LU 

categories based on LU fractions, differences in domain-wide LU-specific deposition estimated by both approaches were 615 

generally within 10% but could be as high as 40% for a given LU category. These variations are caused by the non-linear 

effects of subgrid LU variability on Vd and deposition fluxes. When allowing for differences in LU distributions between those 

used in the grid model simulations generating the LU-specific results and those used to apportion grid-aggregated results to 

specific LU categories, domain-wide LU-specific deposition estimates differed by 50% or more for a number of categories. 

This illustrates that inconsistencies in LU representation between the model simulations and the post-processing apportionment 620 

approach can introduce substantial uncertainties in estimates of fluxes to specific ecosystems. 

Overall, the results in this study demonstrate that the generation of grid-aggregated and LU-specific diagnostic outputs in 

model application and intercomparison studies can provide valuable information from both a model development point of view 

(to better understand drivers of model variability and identify priorities for model improvement) and an impacts analysis point 

of view (to distinguish between stomatal vs. non-stomatal deposition and quantify deposition to specific LU types). However, 625 

it should also be acknowledged that designing, implementing, collecting, and analyzing these diagnostics in AQMEII4 was 

resource-intensive, required a high level of coordination across research groups, and resulted in several iterations before the 

analyses presented in this and other AQMEII4 manuscript could be completed. Finally, the results of the LU analysis highlight 

the importance of documenting and analyzing the representation of LU across models. Future work should be aimed at 

harmonizing this aspect when using CTMs for deposition analyses, in addition to the current standard practice of harmonizing 630 

emissions and boundary conditions in intercomparison studies.  
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